Frictional Behavior of Soft Bi$_2$S$_3$ Coatings: Experimental Results and DFT Modeling

CATEGORY OR KEYWORDS
Materials tribology – Solid lubricants and coatings

AUTHORS AND INSTITUTIONS
Prieto, G.1)2)*, Müller, C.2), Pilotti, B.A.1)3), Dennehy, M.4), Juan A.2), Faccio, R.5), Broitman, E.6) and Tuckart, W.R.1)2)

2) IFISUR, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
3) PLAPIQUI, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas, Camino La Carrindanga Km. 7, Bahía Blanca, Argentina.
4) INQUISUR, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina.
5) Universidad de la República, Facultad de Química, Av. Gral. Flores 2124, Montevideo, Uruguay.
6) SKF Research & Technology Development Center, 3439 MT Nieuwegein, The Netherlands.

*Corresponding author: german.prieto@uns.edu.ar

ABSTRACT
In harsh environments, solid lubricants are the often best choice in order to reduce friction and wear, thanks to their resistance to high temperatures and contact pressures.

For this purpose, traditional solid lubricants, such as graphite and molybdenum disulfide (MoS$_2$) have been extensively used. However, all of them show weaknesses in some aspects. For example, graphite needs moist air, while MoS$_2$ requires high contact pressures in order to properly lubricate [1].

Bismuth trisulfide (Bi$_2$S$_3$) is a promising solid lubricant candidate that has not been extensively studied to date [2].

The aim of this study was to analyze the frictional behavior of a Bi$_2$S$_3$ based soft coating under variable relative humidity (RH) atmospheres and contact pressures. In addition, its performance was compared to a MoS$_2$ coating produced by the same method.

The interactions between the Bi$_2$S$_3$ coating and the steel substrate were modelled using Density Functional Theory models.

REFERENCES