

Brief history of honing

- The idea of honing using a pre-determined grinding movement to create universal stock removal began centuries ago. In the 1500's Leonardo da Vinci developed a tool for the machining of wooden tubes using a tool that used a motion of rotation and stroking and incorporated an abrasive grit.
- "Lots of details make perfection, but there is no detail in perfection"
- Perfect Circle

Brief history of honing

- Earlier versions of modern hone tools were developed at the beginning of the 20th century to improve components in the internal combustion engine.
- The first honing tools were wooden sticks with abrasive paper. Springs forced the sticks against the cylinder walls.
- In1924 a five bladed stick honing tool with a universal joint and spring feed was patented.
- In the early1930s, honing was first used in a high production application of stack honing of connecting rods.

Animation credit to: https://www.youtube.com/watch?v=Az-El3QHSIE Upladed by ASTUD Custom designed to machine and application

stle

- Durable body
- Spring retention
- Expanders and stones
- Feed cone and rod
- Rotation and reciprocation
 equal stroke
- Feed and speed generate crosshatch signature

Ultimate in bore geometry correction

- Honing and Lapping are the ultimate in machining processes for "hard to machine" materials, thin wall and interrupted bores, tandem bores, semi-blind bores...
- Honing and Lapping allows for correction of the majority of bore errors including those commonly caused by prior machining, heat treat, chucking, etc.

BORE GEOMETRY

Producing the ultimate precision parts

Machine Technology

- Vertical or Horizontal
- Multi or single stroke technologies
- Servo-controlled tool expansion and stroke reciprocation process using precision ball-screws
- Single or multiple spindles
- Air gaging compliant
- Integration and automation

Control Technology

Windows[®] based PC

- Configurable, user-friendly interface
- In-house programing is flexible, supportable and easily updated
- Intuitive part processing
- Visual stroke and bore profiles

Producing the ultimate precision parts

• Fixturing

- Very critical to produce tight tolerance parts and cannot be overlooked. Honing is made to follow the existing bore and not to create or effect centerline
- Cardanic (technical float)
- Single or stacked parts
- Bladder
- Highly part customized (clams)

stle

Single stroke honing option

- Process Considerations
 - Material
 - L/D ratio
 - Stock removal requirements
- Interruptions or Tandem
- Chip and Burr Formation
- Surface texture and finish
- Bore geometry (rainbow)

74th STLE Annual Meeting & Exhibition, Nashville, USA, May 19-23, 2019

A quality honed surface is dependent on client functional objectives

Hone Hea

Shape

• Perfecting bore shape/ geometry

Surface texture

- Support of tribologically stressed contact surfaces
- Creation of defined oil retention valleys and cross hatch
- Bearing surface creation
- Smooth, near polish
- Minimization of residual part stress

High precision requires a total solutions provider

- Machines and Controls
- Tooling
- Abrasives
- Fixtures
- Gages
- Oils/Coolants
- R&D Laboratory
- Global manufacturing and support
- Internal-External Expertise

Honed parts - Automotive industry

- Typical Car & Engine Components
 - Motor Blocks, Small Engines, Injectors, Turbo Charger Housings, Common Rail Parts, Servo Steering Components, Brake Drums, Liners, Gears, Rocker Arms, Connecting Rods.
- Sample processing requirements
 - Liners: Surface roughness parameters, Constant Crosshatch Angle
 - Small Engines: Nikasil & Chromium plated, blind-bores
 - Injectors: Tolerances < 0.001 mm, Rz < 1

 - Brake Drums: Constant Surface Texture, ovality < 0.015 mm, blind-bore
 Gears: < 0.003 0.004 mm, surface finish Ra 0.2 0.3, Perpendicularity
 - Connecting Rods: Bore Parallelism, Roundness, Surface

Specialized engine honing techniques

- Torque Plate Honing
 - Honed with block or liner under bolted load to represent head installation
- Hot Honing of NASCAR block
 - Block honed with elevated oil temperature to replicate operating temperature

stle

🛾 stle

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

• Cylinders

- Tolerance H7 / H8, ovality: 0.01 -0.03 (mm), roughness: Ra 0.32 (μm
- High precision, long seal life

🕘 stle

Triboconditioning®. A preferred solution to improve plateau honed surfaces and to answer the need for Friction Reduction and increased Wear Resistance

- What is Triboconditioning® 🐔 In short:
 - A mechanochemical surface finishing process, a variant of tribofinishing
 - Combines mechanical burnishing in combination with a tribochemical solid lubricant deposition
 - Applied using existing production Hone Machinery
 - Allows in-manufacture running-in
 - Allows per-component process optimization

Conclusions

- Honing machinery and intuitive control technology continue to evolve to address new application challenges (materials, GD&T requirements, etc.)
- Mechanochemical surface finishing allows additional improvement in the tribological properties
- Timely developments given demand for higher energy efficiency and lower emissions
- Triboconditioning improves lubrication at low speed/high load enabling the use of lower viscosity oils, start-stop and boosting

