

Analysis of Material Defects in Relation to Different Damage Mechanisms

<u>Jörg Binderszewsky</u>, Toni Blass, Dr. Wolfram Kruhöffer, Dr. Jörg Loos Schaeffler Technologies AG & Co. KG

Agenda

1 Introduction

- 2 Rating of inclusions
- **3** Subsurface fatigue
- **4** White etching cracks (WECs)
- 5 Summary

Agenda

1 Introduction

- 2 Rating of inclusions
- **3** Subsurface fatigue
- **4** White etching cracks (WECs)
- 5 Summary

Introduction

Inclusions in technical steels are not avoidable, even in clean steels.

Inclusions in clean steels consist typically of few large particles and lots of small ones.

Inclusions are generally stress raisers in the material with a major impact on fatigue strength. (Influence of type, size, shape, depth, orientation, bonding, void formation, density, ...)

Agenda

1 Introduction

2 Rating of inclusions

- **3** Subsurface fatigue
- **4** White etching cracks (WECs)

5 Summary

Rating of inclusions

Classification of inclusions

Type A – MnS Stringers Type B – Aluminia Stringers Type C – Silicate Stringers Type D – Globular Oxides

ISO 683-17 determines requirements for the microscopic assessment of content of NMIs in ball and roller bearing steels.

ISO 4967 determines the rating limits for the requirements.

[ASTM E45 / Harris, Kotzalas: Rolling Bearing Analysis, 5th ed.]

Rating of inclusions according to DIN 50602

	K0	K1	K2	K3	K4	K5	K6	K7	K8	K9
OA	3	0	0	0	0	0	0	0	0	0
OS -	3	1	0	0	0	0	0	0	0	0
OG	21	9	3	0	0	0	0	0	0	0
■ SS	0	0	0	0	0	0	0	0	0	0

All rights reserved to Schaeffler Technologies AG & Co. KG, in particular in case of grant of an IP right.

OA

Rating of inclusions

Challenge: prediction of inclusion properties (number, size, orientation, ...) in a component

Agenda

1 Introduction

2 Rating of inclusions

- **3** Subsurface fatigue
- **4** White etching cracks (WECs)

5 Summary

Impact of inclusions on operating life

Micro inclusions \rightarrow considered in rating life

Macro inclusions \rightarrow risk of premature failures

Questions:

Impact on rating life – adequate cleanliness?

Where are macro inclusions of which size acceptable?

→ prediction by analysis?

Subsurface fatigue

Analysis options

SCHAEFFLER

ISO 281 (valid for typical rolling bearing material)

STLE life factors (melting practice)

[Zaretsky 1992]

Finite Element Analysis

[Böhmer 1993, Melander 1997, Alley 2010, Burkart 2012, Lai 2018, ...]

Voronoi FE model

[Jalalahmadi et al. 2011]

Fracture Mechanics

[Kaneta et al. 1986, Murakami et al. 1989, Tarantino et al. 2011, Lewis, Tomkins 2012, Mazzu 2013, Donzella et al. 2015, ...]

Linear Elastic Fracture Mechanics (LEFM) approach

Assumption: inclusions can be analyzed as small cracks.

Subsurface fatigue

Fracture modes of loading

(normal to the crack)

Mode II (in-plane shear) Mode III (out-of-plane shear) Subsurface fatigue **Application of LEFM**

Successful application in many technical fields

(aerospace, pressure vessels and piping systems of power plants, turbines, pipelines, railway vehicles, steel structures, welded components, ...)

Several papers with application of FM to RCF

[Kaneta et al. 1986, Murakami et al. 1989, Lewis, Tomkins 2012, Tarantino et al. 2011, Mazzu 2013, Donzella et al. 2015, ...]

Two challenges in RCF:

- complex stress state
- short crack behavior

(Source: Kaneta 1986)

SCHAEFFLER

Multiaxial stress state

Thogonal shear stress

- multiaxial stress state
- **shear stress** assumed to be critical

Subsurface fatigue
Determination of Mode II threshold

Influence of **crack face friction** and superimposed normal stress.

Mode II test with compact tension shear specimen (100Cr6).

Subsurface fatigue

Determination of Mode II threshold

SCHAEFFLER

Mode II test with compact tension shear specimen (100Cr6)

U. Paderborn 2018

Subsurface fatigue

Published Mode II threshold results

SCHAEFFLER

5/22/2019 Analysis of Material Defects in Relation to Different Damage Mechanisms

Short Crack Behaviour: Kitagawa-Takahashi diagram

with $\Delta K_{IIth} \Rightarrow$ fatigue limit depending on crack size (LEFM): $\tau_w = \frac{\Delta K_{IIth}}{2 \cdot Y \sqrt{\pi \cdot a}}$ Ь fatigue limit log fatigue limit w/o crack: $\tau_{w max} \approx \frac{1.5}{\sqrt{3}} HV$ El Haddad transition: $\tau_w = \frac{\Delta K_{IIth}}{2 \cdot Y \sqrt{\pi \cdot (a + a_0)}}$

Kitagawa-Takahashi diagram for Mode II fatigue (penny shaped crack)

5/22/2019 Analysis of Material Defects in Relation to Different Damage Mechanisms

74th STLE Annual Meeting and Exhibition

SCHAEFFLER

Mode II approach for RCF

SCHAEFFLER

Subsurface fatigue

Mode II approach for RCF

SCHAEFFLER

V

X

Ζ

Subsurface fatigue

Fatigue limit estimation for Mode II (penny shaped crack)

Evaluation of ISO/TS 16281 modified reference rating life calculation

Subsurface fatigue Mode I or mixed mode approach

Assumption: cracks can grow under **Mode I** compression or compressive **mixed mode**.

- type of inclusion
- bonding
- void or gap occurence
- residual stresses

(acc. to Richard/Sander 2016)

Subsurface fatigue

Mode I or mixed mode approach – butterfly generation

Assumption: cracks can grow under mode I compression or mixed mode.

Effect decreases with increasing distance from inclusion -> crack arrest => butterfly!

Mode I or mixed mode approach – butterfly generation

Simulation of crack propagation - prospect

SCHAEFFLER

Issues:

•

. . .

- crack kinking behavior
- crack face friction
- crack growth rate
- influence of residual stresses
- mixed-mode behavior

Ver. Reid-1.500 Alega/America Depresente Stille Barts 1 The set 1] 14.1].48 WHY42.49 9244

Crack parameters:

- length 2a = 20 μm
- angle β = 0°
- depth t = 150 μm
- coeff. of friction μ = 0.0

=> ongoing research!

Agenda

1 Introduction

- 2 Rating of inclusions
- **3** Subsurface fatigue
- **4** White etching cracks (WECs)
- 5 Summary

White etching cracks (WECs) WEC characteristics

SCHAEFFLER

WECs can lead to **premature failure** at e.g. 1% -20% of calculated rating life.

WECs can occur in rings and rolling elements of **all bearing types** in greased as well as in oil-lubricated bearings.

Typically a steep rise of failure probability occurs.

[Holweger 2015, Loos 2016, Kruhoeffer 2017, Franke 2017]

White etching cracks (WECs)

WEC generation: stress - strength

Stress

- stress and strain state
- Iubrication conditions

hydrogen diffusion

- electric current
- frictional energy
- corrosion

. . .

• lubricant chemistry

An increased hydrogen content leads to a fundamental reduction of the endurance limit

Strength

content

microstructure

diffusible hydrogen

(Murakami 2013, Hamada 2006, Karsch 2012, ...)

WEC critical conditions

Reduction of material properties by hydrogen

White etching cracks (WECs)

SCHAEFFLER

Experience from WEC test rigs

None of Schaeffler's tests has shown a significant influence of the technical steel cleanliness on WEC.

Agenda

1 Introduction

- 2 Rating of inclusions
- **3** Subsurface fatigue
- **4** White etching cracks (WECs)

5 Summary

- Non-metallic inclusions cannot be avoided in technical steel production, this is considered in the generally used life rating methods.
- Fracture mechanics can offer a reasonable approach for the evaluation of inclusions.
- White etching cracks are an independent damage mechanism characterized by premature fatigue and typically a small scatter of time to failure.
- The cleanliness of the steel has no significant influence on WEC failures on different test rigs.

Literature

Harris, Kotzalas: Rolling Bearing Analysis, 5th ed., Taylor & Francis Group, 2006

- Schlicht: Einfluß der Stahlherstellung auf das Ermüdungsverhalten, ZwF 73 (1978) 11
- E. Zaretsky: STLE Life Factors for Rolling Bearings, STLE 1992
- H.J. Böhmer, A New Approach to Determine the Effect of Nonmetallic Inclusions on Material Behavior in Rolling Contact, in STP1195, ASTM Int. 1993
- A. Melander: A finite element study of short cracks with different inclusion types under rolling contact fatigue load, Int. J. o. Fat. 19, 1997
- E.S. Alley, R.W. Neu: Microstructure-sensitive modeling of rolling contact fatigue, Int. J. o. Fat. 32, 2010
- K. Burkart et al.: Rolling Contact and Compression-Torsion Fatigue of 52100 Steel with Special Regard to Carbide Distribution, in STP1548, ASTM Int. 2012
- Lai, Kadin: A better understanding of material imperfections, SKF Evolution 2018
- B. Jalalahmadi et al.: Material Inclusion Factors for Lundberg-Palmgren–Based RCF Life Equations, Trib. Trans. 54, 2011
- Kaneta et al.: Growth Mechanism of Subsurface Crack Due to Hertzian Contact, Journal of Tribology, 1986
- Murakami et al.: Fracture-Mechanics Approach to Tribology Problems, ASTM STP1020, 1989
- Tarantino et al.: A comparison of Mode III threshold under simple shear and RCF conditions, Eng. Fract. Mech. 78, 2011
- Lewis, Tomkins: A fracture mechanics interpretation of rolling bearing fatigue, Proc IMechE J: J Engineering Tribology 226(5), 2012
- Mazzu: A numerical approach to subsurface crack propagation assessment in rolling contact, Fat. & Fract. of Eng. Mat. & Struct. 36, 2013
- Donzella et al.: Experimental and Numerical Investigation on Shear Propagation of Subsurface Cracks under Rolling Contact Fatigue. Procedia Engeneering 109, 2015
- S. Okazaki et al.: The influence of static crack-opening stress on the threshold level for shear-mode fatigue crack growth in bearing steels, Eng. Fract. Mech. 174, 2017
- H. Kitagawa, S. Takahashi: Applicability of fracture mechanics to very small cracks or the cracks in the early stage, in Proc. 2nd Int. conf. on mech. beh. of mat., ASM, 1976
- M. El Haddad, T. Topper, K. Smith: Prediction of non-propagating cracks., Eng. Fract. Mech. 11, 1979, p. 573-584

Literature

- H.A. Richard, M. Sander: Fatigue Crack Growth, Springer International, 2016
- W. Holweger et al.: White Etching Crack Root Cause Investigations, Trib. Trans 58, 2015
- J. Loos, I. Bergmann, M. Goss: Influence of Currents from Electrostatic Charges on WEC Formation in Rolling Bearings, Trib. Trans. 59, 2016
- J. Loos et al.: Influences on Generation of White Etching Crack Networks in Rolling Bearings, J. o. Mech. Eng. a. Autom. 6, 2016
- W. Kruhoeffer, J. Loos: WEC Formation in Rolling Bearings under Mixed Friction: Influences and "Friction Energy Accumulation" as Indicator, Trib. Trans. 60, 2017
- J. Franke et al.: White Etching Cracking—Simulation in Bearing Rig and Bench, Tests. & Lubr. Techn., STLE 2017
- T. Haque et al.: Lubricant Effects on White Etching Cracking Failures in Thrust Bearing Rig Tests, Trib. Trans. 61, 2018
- O. Barrera et al.: Understanding and mitigating hydrogen embrittlement of steels, J. Mater. Sci. (2018) 53:6251-6290
- Y. Murakami et al.: Hydrogen embrittlement of high strength steels: Determination of the threshold stress intensity for small cracks, Eng. Fract. Mech. 97, 2013
- Y. Matsubara, H. Hamada: A Novel Method to Evaluate the Influence of Hydrogen on Fatigue Properties of High Strength Steels, in STP1465, ASTM Int. 2006
- T. Karsch et al.: Influence of hydrogen content and microstructure on the fatigue behaviour of steel SAE 52100 in the VHCF regime, Int. J. o. Fatigue 60, 2014
- S. Fujita et al.: Effect of hydrogen on Mode II fatigue crack behavior of tempered bearing steel and microstructural changes, Int. J. o. Fatigue 32, 2010
- J.-B. Shi et al.: On effect of hydrogen on very high cycle fatigue behaviours of high strength steels, Materials Science and Technology 29, p. 1290, 2013
- Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier Science 2002