

High Performance new mineral and PAG hybrid turbine oil

Kumar, Junya Iwasaki, - Idemitsu Lubricants America Corporation

Hiroki Sekiguchi, Shirakura Yuuhei, - Idemitsu Kosan Co., Ltd.

Background

- Requirements of modern turbine oils
- Mineral turbine oil and PAG turbine oil
- Expected benefit of hybrid turbine oil

Development of hybrid turbine oils

- Oxidation stability test
- □ Sludge / varnish cleaning test
- Extreme pressure and Anti-wear test

Conclusion

Background

Requirements of modern turbine oils

In order to improve thermal efficiency,

current gas turbines must...

- Operate at higher temperatures
- Provide longer service life
- Ensure extended drain interval and superior performance, *i.e.*, minimizing varnish/sludge formation

High Temperature and Long life Mineral Turbine Oil having EP Characteristics

- □ Long lifetime over 5 years
- Good water separability
- Reduced-sludge and varnish formation by optimizing AO and EP additives

New PAG turbine oil that enable easy management and

exchange from mineral oil

- Good compatibility with Mineral Turbine Oil
- Low sludge and varnish formation
- Excellent solubility of sludge and varnish
- Good EP Characteristics

Benefits compared with mineral oil

- 1. Low sludge and varnish formation
- 2. Can solve precipitated sludge and varnish
- 3. Longer life and extended drain interval
- 4. Superior extreme pressure and anti-wear performance

Benefits compared with PAG oil

- 1. Lower cost and almost similar performance
- 2. Better water separation properties

We evaluated hybrid oils in which Mineral Oil was blended with PAG Turbine Oil. **Selected PAG Turbine Oil has compatibility with mineral Oil.**

Developing Oils

		Mineral oil	Developing oil A	Developing oil B	PG25
Mineral Turbine oil	wt%	100	90	50	0
PAG Turbine oil	wt%	0	10	50	100
KV40C	mm2/s	31.36	28.09	25.34	23.86
KV100C	mm2/s	5.681	5.106	5.283	4.991
VI	-	123	112	128	140
D	g/cm3	0.8482	0.8581	0.9092	0.9905
Acid number	mgKOH/g	0.10	0.16	0.23	0.35

Test Method 1 (Dry-TOST, ASTM D7873)

Test Subject:

RPVOT remaining ratio(%) RPVOT Millipore (mg/100ml) 120% Oxygen 100% 3L/h RPVOT residual ratio, % 80% 60% ---- Mineral oil 40% -- Developing Oil A Cu-Fe -- Developing Oil B 20% Coil ---PG25 Test oil 0% 360ml 248° 500 1000 1500 0 F Testing time ,hrs

Developing Oil A and B indicates comparable life to Mineral Oil

Test Subject:

RPVOT remaining ratio(%) Millipore (mg/100ml) Millipore value 80 Oxygen 70 3L/h Developing Oil A Developing Oil B Upper Cu-Fe limit Coil Test oil 0 360ml 248° F 500 1000 1500 0 **Testing time**, hrs

Developing Oil B indicates low sludge and varnish

A2F pump test JCMAS P045

test

1000h

35MPa 1.0L/h 1000h Evaluate: Residual ratio of RPVOT,

and Millipore after the time

30°C

2nd

Pump

test

1000h

A2F Pump test (JCMAS P045)

Fig. RPVOT residual ratio

Developing Oil B and PG25 has long life.

A2F Pump test (JCMAS P045)

→ Developing Oil A → Developing Oil B → PG25

Developing Oil B and PG25 has little sludge and varnish.

Appearance after 2nd A2F pump test

Color change of developing oil A is milder than PAG turbine oil. The change in color of developing oil B and PG25 is due to solved sludge and varnish.

Appearance of Oil Cooler after 1st A2F pump test (Before 2nd A2F pump test)

Appearance of Oil Cooler after 2nd A2F pump test

Developing oil B and PG25 can wash sludge and varnish

Extreme pressure, load carrying capacity

Four ball weld test (ASTM D2783)

	Mineral turbine oil	Developing oil A	Developing oil B	PG25
LNL,N	392	392	392	314
WL,N	1236	1569	1236	1569
LWI,N	173	176	172	169

Developing oil B has strong EP performance

Anti-wear properties

Four ball wear test (ASTM D4172)

Mineral turbine oil Developing oil A Developing oil B PAG turbine oil

0 0.2 0.4 0.6 0.8

Wear diameter, mm

Developing oil B has good anti-wear properties like PAG turbine oil

Extreme pressure and anti-wear performance

FZG Gear test (DIN 51354)

✓ Load
✓ Test time
✓ Oil supply
✓ Evaluate

Load stage 1~12 stage 15min/load stage Oil bath (90°C start) fail stages

Developing oil B has good anti-wear properties like PAG turbine oil

Water separabillity (ASTM D1401)

Developing oil B have good water separability like Mineral turbine oil

Benefits of developing oil B

- 1. Wash out precipitated sludge and varnish
- 2. Long life and good EP performance
- 3. Good water separation properties
- 4. Excellent cost performance

By mixing 50% of mineral turbine oil with 50% of PAG turbine oil, the same benefits as developing oil B can be expected.

Thank you

DENITSU

