

BRIDGING THE GAP: FILTER DEBRIS ANALYSIS

Henry Neicamp | 5.22.19

About the Speaker HENRY NEICAMP | POLARIS LABORATORIES®

Technical Business
Consultant

Industry Experience

- B.S. General Engineering/Mining Engineering University of Illinois
- More than 35 years technical sales, engineering and management experience in the petroleum industry and lubricants marketplace
- Well Logging Engineer with Seismograph Service Corporation and Dresser Industries
- Sales Engineer and Technical Services Manager with Pennzoil-Quaker State Company
- Sales/Technical Engineer with Warren Oil Company
- Field Services Manager; Midwest Territory Sales Manager; Technical Business Consultant with POLARIS Laboratories®
- CLS/OMA certified by STLE

FILTER DEBRIS ANALYSIS

Detect failure at it's earliest stages!

WHAT IS FILTER DEBRIS ANALYSIS (FDA)?

- FDA is a way to determine what particles (data) are being captured by the filters
- Filters by nature capture all large particles so these particles are excluded from routine oil analysis
- FDA on large particles provides valuable insight on how the machine is functioning
- Originated in the mining industry
 - Estimate equipment life expectancy, monitor wear

WHY DO FILTER DEBRIS ANALYSIS (FDA)?

- Your filter can tell you things your oil can't!
 - Filter Debris Analysis (<u>FDA</u>) identifies "<u>MISSING DATA</u>", such as contaminants and wear mechanisms not detected by traditional elemental analysis

WHAT
PARTICLES
ARE BEING
CAUGHT BY
YOUR FILTER?

WHAT ARE THE BENEFITS?

- Detects early stages of component failure
- Bridges gap between elemental analysis & Particle Count (PC) / Particle Quantifier (PQ)
- Determines particle size, type & wear mechanism
- Tell you what is causing filter plugging
- Facilitates root cause analysis

FIELD TESTING

- Mechanics have been cutting filters for years
- When doing this, you may observe abnormal wear particles
- Now what?

WHAT FILTERS CAN BE TESTED?

YES

Canister Filter

Up to 8" in diameter and 6-21 inches long

Filters that have been cut

HOW IS FDA PERFORMED?

1 Filter is received and prepared for flushing

2 Filter is installed in flushing apparatus & flushed w/solvent

Flushed solvent is collected and prepared for: acid digestion and microscope analysis

Spectral analysis is preformed on prepared fluid then microscopic analysis is performed

Report is generated with data analyst's observation and sent to the customer

HOW IS FDA PERFORMED?

FDA TESTS PERFORMED

- Elemental Analysis by ICP, if applicable (oil from filter)
- Acid Digestion Elemental Analysis (filter flushing fluid)
- Analytical Ferrography
- Micropatch

FDA WEAR DEBRIS

ANALYTICAL FERROGRAPHY

MICROPATCH

WHAT CAN FDA IDENTIFY THAT STANDARD TESTING CANNOT?

Analytical Ferrography

- Ferrous metals
- Type of wear
- How much
- How large
- Typically for boundary lubrication

WHAT CAN FDA IDENTIFY THAT STANDARD TESTING CANNOT?

Micropatch

- Non-Ferrous metals
 - Bronze
 - Lead
- Soot agglomerations
- Metallic debris
- o Dirt
- Black oxides
- Red (rust) oxides

OIL SAMPLING VS. FDA

Testing provides	Routine Oil Analysis	Filter Debris Analysis
Particle wear up to 10 micron	•	•
Particle wear greater than 10 micron		•
Provide information on type of wear		•
Maintenance recommendations	•	•
Lubricant additive information	•	
Detailed photographs of magnified wear particles		•
Detect and identify contamination outside of the standard / routine 24 element spectroscopy		•

Component ID	Secondary ID	Component Type	Manufacturer	Model	
#1 FILTER	MILL GEARBOX	FILTER- GEAR SYSTEM		KSP400	
Filter Manufacturer	Filter Number	Unit Time	Oil Time	Filter Time	
		12 Months	9 Months		

Filter Debris Analysis

0	1	2	3	4
NOR	MAL	ABNO	ORMAL	CRITICAL

Report Date	10/16/2017
Account Number	000-000-000
Company Name	
Lab Number	I-123456
Analyst	JDT
Solids (g)	9.8036

Evaluation

With the lubricant change and repair previously done, no corrective action is suggested. There is no wear debris present that suggests this unit is having a progressive failure event. Significant amount of aluminum alloy. Suspect this is residual from the contamination ingression event mentioned on the phone causing cylinder region wear, specifically the piston. Moderate amount of ferrous rubbing wear. Rubbing wear is from normal sliding contact of surfaces. Moderate amount of sliding wear particles, which potentially indicates the components were subjected to excessive load or speed. Moderate amount of abrasives (silica/dirt and environmental contaminants). Moderate amount of soot. Soot is a normal byproduct of the combustion process.

Method (ppm)	Iron	Chrome	Nickel	Titanium	Manganese	Copper	Lead	Tin	Aluminum	Silicon
ICP Oil	NES	NES	NES	NES	NES	NES	NES	NES	NES	NES
Acid Digestion / ICP	213910	900	2823	0	866	2163	0	0	4210	0
Particle Size	Ferrous	Non- Ferrous	Cutting	Fatigue	Spheres	Sliding	Red	Black	Dirt	Soot
2-5µm	2	2	0	8	Elemental analysis of the oil from the filter if applicable					
5-10µm	2	3	0	0						
11-25µm	1	3	0	0						2
25-50µm	0	1	0	0	Elemental	of the	debris f	lushed	from the	2
51-100µm	0	0	0	0	filter after					0
>100µm	0	0	0	0			_			0
>100µm	U	U	U	U						U

Evaluation

Mathad (name)

With the lubricant change and repair previously done, no corrective action is sugg Microscope analysis of the debris having a progressive failure event. Significant amount of aluminum alloy. Suspe mentioned on the phone causing cylinder region wear, specifically the piston. normal sliding contact of surfaces. Moderate amount of sliding wear particles, wh Mechanism excessive load or speed. Moderate amount of abrasives (silica/dirt appenvironm by product of the combustion process.

flushed from the filter by Type and Wear

Microscopo analysis sizing of the debris

metnoa (ppm)	iron	Chrome	NICKE	Intanium Man Microscope analysis sizing of the debris in						
ICP Oil	NES	NES	NES	NES	flushed from the filter by severity					
Acid Digestion / ICP	213910	1900	2823	U	866	2163	0	0	4210	0
Particle Size	Ferrous	Non- Ferrous	Cutting	Fatigue	Spheres	Sliding	Red Oxides	Black Oxides	Dirt	Soot
2-5µm	2	2	0	0	0	1	0	0	2	2
5-10µm	2	3	0	0	0	2	0	0	2	2
11-25µm	1 /	3	0	0	0	2	0	0	2	2
25-50µm	0	1	0	0	0	1	0	0	1	2
51-100µm	0	0	0	0	0	0	0	0	0	0
>100µm	0	0	0	0	0	0	0	0	0	0

DEBRIS: MICROSCOPE PHOTOS

SUCCESS STORY

- ABC Company with large expensive gearbox(s) was experiencing failures
- FDA Detailed Analysis Impossible; AF Clean; Micropatch Severe Varnish
- Company is flushing gearboxes and switching to an oil with better oxidative stability
- Gearbox(s) costs \$250K apiece and the company has many of these gearbox(s)

QUESTIONS AND DISCUSSION

THE 2019 CUSTOMER SUMMIT

JOIN US!

Receive a custom program review

Learn maintenance best practices

Network with peers and experts

Uncover new tools and solutions

November 18-20 | The Alexander Hotel | Indianapolis, Indiana

THANK YOU!

Henry Neicamp, CLS, OMA
Technical Business Consultant
hneicamp@polarislabs.com

Phone: 317.808.3750 | Mobile: 317.408.7681

