Methods for precipitating wear transitions (such as scuffing)

- Increasing the severity of the contact, by ramping up the load
- Precipitating failure of the lubricant or additive film, by increasing the bulk temperature, by external heating

Load Ramp Tests

- Not a convincing as model of real systems
- Resulting damage usually catastrophic, producing the tribological equivalent of an ultimate tensile strength test
- Evidence, in particular in the case of scuffing in ring-liner contacts, that the process may involve surface fatigue. If so, we need the equivalent of a fatigue test, not a tensile test

Temperature Ramp Tests

Not accurate model of real systems, where the temperature gradient is from asperity tip to bulk material and not the other way round, from external heat source to specimen surfaces

Speed Ramp and Stop/Start Tests

How to increase frictional energy input, hence surface temperature, while avoiding precipitating a single, catastrophic, failure event and without producing an inverted temperature gradient?

Increase sliding speed

Background Observations Frictional Heating

Mineral Oil 20/50 - 15 Hz - 25 mm
Heater Block Temperature Set-point: 100 C
Background Observations
Lubricant Feed

New Protocol – Bench-mark Test

Bench-mark Test

As the additive package is activated, the mean friction falls and the start of stroke friction spike disappears.

Bench-mark Test

As At 280 C, the friction is rising and becoming more chaotic. At 287 C, the friction has become completely chaotic, indicating some form of failure.

Bench-mark Test

• Accumulation of compacted fine debris at the stroke end, with debris filling the grinding marks
• Away from the stroke end, shiny areas indicate material removal

Bench-mark Test

High speed data taken every 10 C rise in temperature
Bench-mark Test

Away from stroke end (25% stroke and under higher magnification), mixture of smearing of material into the grinding marks (on the left) and light abrasion (on the right)

Bench-mark Test

Agglomeration of transferred fine debris material across width of the contact
More consistent with fine two body abrasive wear than adhesive wear, leading to accumulation of material on moving specimen as well as at stroke end

Bench-mark Test

Although this process may eventually lead to seizure between the transferred material on the moving specimen and the source of the transferred material, the fixed plate, this is not an example of an adhesive wear mechanism

If we define scuffing as exclusively an adhesive wear process, this experiment does not appear to be an adequate model

Summary of Process
Mild abrasive wear
Agglomeration of fine debris at leading edge of contact
Adhesion of transferred material
Like-on-like materials in contact may eventually lead to seizure

Stop/Start Cycle Tests

Key differences:
• The temperature feedback source no longer the fixed specimen surface temperature, but from a thermocouple embedded in the supporting heater block, hence the set-point temperature is heater block temperature, not the specimen temperature
• Instead of running at constant reciprocating frequency, a stop/start cycle is used, with each cycle resulting in a temperature excursion
• During each stop phase, the temperature of the heater block and the specimen are allowed to cool to the heater block set-point temperature
• Instantaneous friction traces taken at end of each stop/start cycle
Stop/Start Cycle Tests

As with temperature ramp tests, friction traces indicate starved lubrication at beginning of stroke, moving away from lubricant feed.

Stop/Start Cycle Tests

At the stroke end on plate specimen, material pull-out.....

Stop/Start Cycle Tests

...with corresponding material transfer to surface of moving specimen.

Stop/Start Cycle Tests

Unlike with temperature ramp tests, where debris accumulates at stroke end, with stop/start test, material removed at stroke end (white area) with less wear away from stroke end.

Stop/Start Cycle Tests

Adhesion of a pulled out and transferred particle to moving specimen frequently results in observable groove in fixed plate specimen.

Stop/Start Cycle Tests

Note: Stroke end on left side of image.
Stop/Start Cycle Test

Summary of Process
- Minimum lubricant entrainment at start of stroke
- Surface propagated fatigue at asperities (?)
- Adhesive pull-out
- Onset of adhesive wear – scuffing

Conclusion
- The two test procedures produce very different wear mechanisms
- Temperature ramp test produced what one might term a “false” adhesive wear process
- Stop/Start test, with the temperature gradient right way round and cyclic frictional energy input, produces adhesive wear, much as illustrated in most text books
- If we consider scuffing to be either onset of adhesive wear, or at least, some form of adhesive wear, we should use tests that actually produce adhesive wear, not some other mechanism