

The compatibility of multilayer surface treatments with bio-lubricants base oils

J Carrell, Dr T. Slatter, Prof. R. Lewis, The University of Sheffield, UK

Dr U. Little, South West College, UK

Introduction

- > Test Materials and Method
- \succ Results
- Lubricant Interactions
- Further Work

Introduction

Drivers for using more environmentally acceptable lubricants;

- For industry legislative environment
- Downstream user demand

Largest markets are currently EU and USA

Emerging markets, such as India, Brazil and China are predicted to grow faster due to the increase in passenger car use and the availability of crops to produce biolubricants.

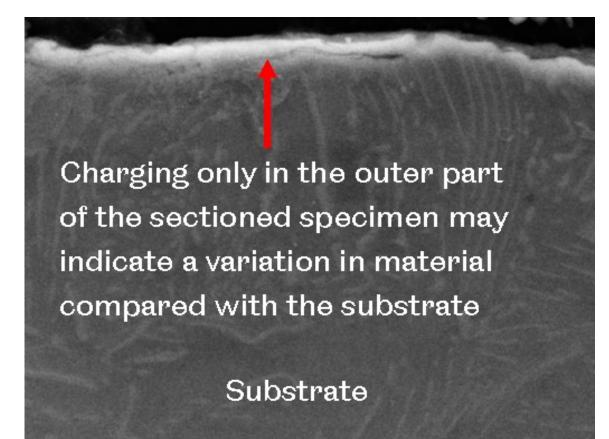
Grand View Research. *Bio-lubricants Market Analysis By Raw Material, By Application, Industrial, by end-use, Segment Forecasts To 2024.* 2016.

Applications

Test Materials and Method

- Soybean Oil Triglyceride Structure
- Jojoba Oil wax, long chain monohydric alcohol and carboxylic acid
- Mineral base oil Paraffinic group 1 base stock

- EN09 steel substrates surface ground or super finished
- ▶ DLC, commercial Dymon-iC[™]
- Shot Blasting, proprietary two stage process spherical ceramic media and solid lubrication media, tin and Molybdenum Disulphide
- Calcium sulphate based chemical dip, Proprietary treatment using calcium sulphate


Surface Treatments

The

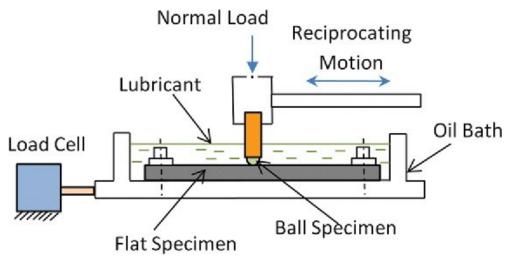
Of Sheffield.

University

Surface Treatment Combinations

- > DLC followed by chemical dip
- Chemical dip followed by DLC
- Shot blasting followed by DLC
- Shot blasting followed by Chemical dip
- Shot blasting, chemical dip, DLC

Surface Treatment Combinations


	Super finished	DLC	Shot Blasting	Chemical dip
1		Α		
2 3	A	В		
3			Α	
4	A		В	
5	A	В		С
6	A			В
7		Α		В
8	A		В	С
9				Α
10			Α	В
13	A	С		В
14		В		Α
15		С	Α	В
16		В	Α	
17	A	С	В	

Test Method

Experimental Parameters	Value
Speed, rpm	260
Temperature, °C	100
Stroke, mm	15
Normal load, N	40
Chrome steel ball bearing, Surface roughness, µm	0.038
Ball Hardness, Hv	800
Volume of oil used, ml	30
Test duration, min	60

A. Bahari, T. Slatter and R. Lewis, "Friction and Wear Phenomena of Vegetable Oil–Based Lubricants with Additives at Severe Sliding Wear Conditions," *Tribology Transactions*, 2016.

Results

Rank	Soybean	Volume loss, mm ³	Jojoba	Volume loss, mm ³	Mineral	Volume loss, mm ³
1	SF Steel	0.003	SF chemical Dip	0.005	SF Steel	0.005
2	SF DLC, Chemical Dip	0.004	SF, Shot Blasting	0.005	SF Chemical Dip	0.007
3	SG, Shot Blasting, DLC	0.007	SF Steel	0.005	SG, Chemical Dip, DLC	0.008
4	SF, Chemical Dip, DLC	0.007	SF, Shot Blasting, Chemical Dip	0.007	SF, Shot Blasting	0.008
5	SF, DLC	0.008	SG, Shot Blasting, DLC	0.007	SF DLC, Chemical Dip	0.008

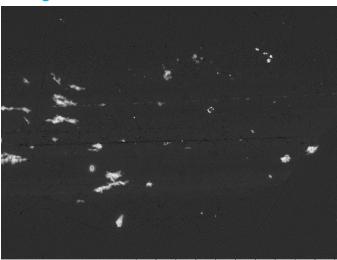
Rank	Soybean	Coefficient of Friction	Jojoba	Coefficient of Friction	Mineral	Coefficient of Friction
1	SF Steel	0.06	SF chemical Dip	0.07	SF Steel*	0.05
2	SF DLC, Chemical Dip	0.07	SF, Shot Blasting	0.07	SF Chemical Dip	0.09
3	SG, Shot Blasting, DLC	0.07	SF Steel	0.07	SG, Chemical Dip, DLC	0.12
4	SG, Chemical Dip, DLC	0.09	SF, Shot Blasting, Chemical Dip	0.06	SF, Shot Blasting	0.11
5	SF, DLC	0.07	SG, Shot Blasting, DLC	0.07	SF DLC, Chemical Dip	0.1


Wear – Steel

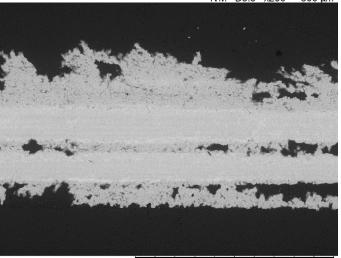
Soybean Oil

Jojoba Oil

Mineral Oil

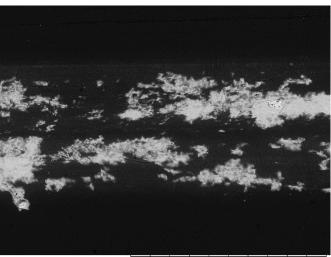


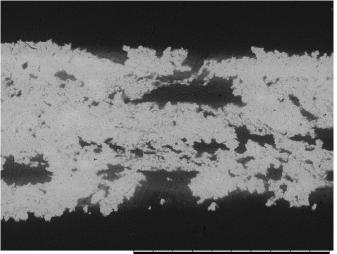
Wear – DLC containing coatings


Soybean Oil

Super finished DLC, chemical dip

NM D5.5 x200 500 μm

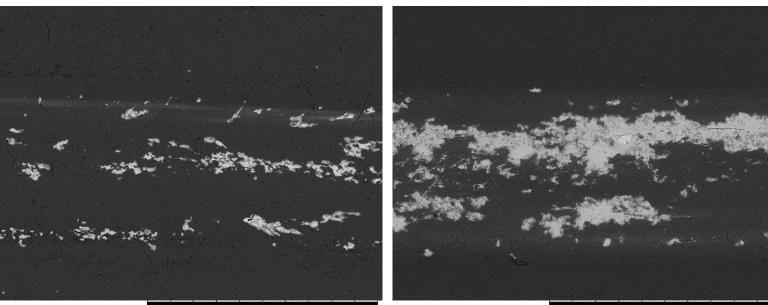

Super finished, DLC


x200 500 μm

NM

Mineral Oil

NM D5.4 x200 500 μm

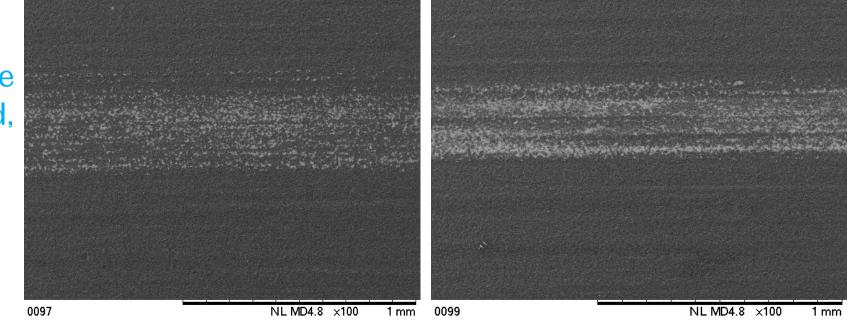

Wear – DLC containing coatings

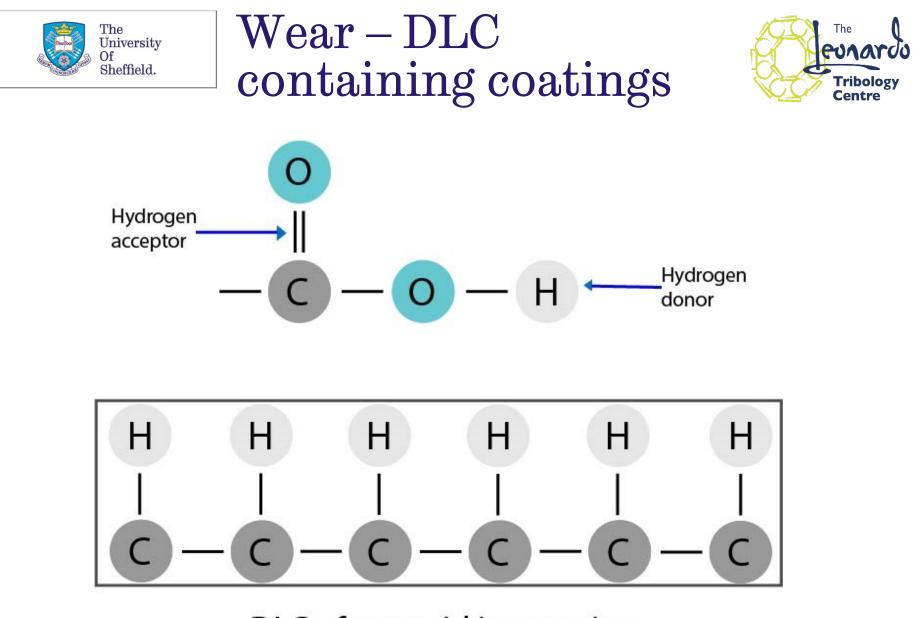
Soybean Oil

Mineral Oil

Super finished, chemical dip, DLC

N D6.5 x200 500 μm


N D6.0 x200 500 μm



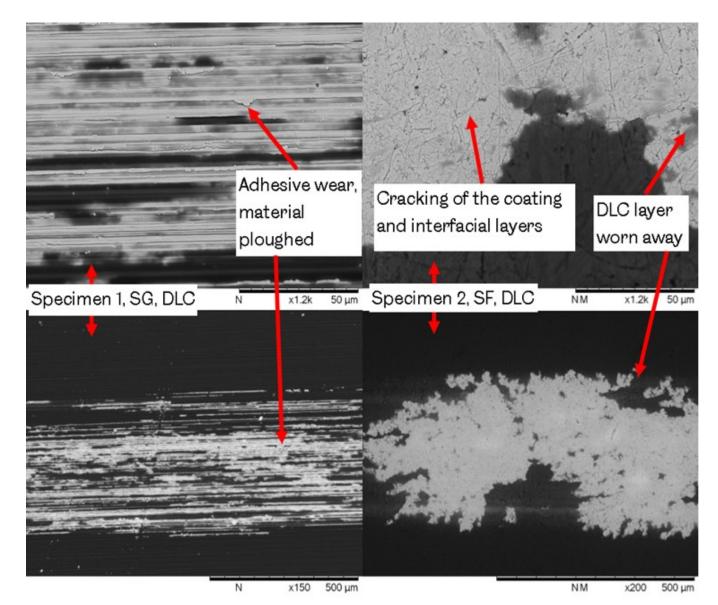
Wear – DLC containing coatings Soybean Oil Mineral Oil

Surface ground, Shot blast, DLC

DLC - fatty acid interaction

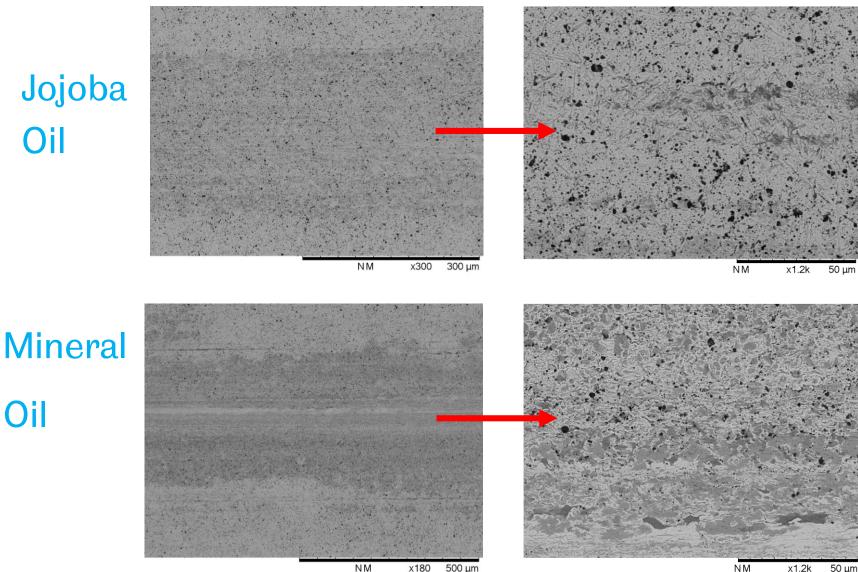
Surface Finish

Super Finished Substrate


Mineral Base Oil 20 Jojoba Oil Soybean Oil Mineral Base Oil 🖾 Jojoba Oil Soybean Oil COF MO -COF JO -COF SO -COF MO -COF JO -COF SO 0.07 0.12 0.25 0.12 0.06 0.1 0.1 Volume of Material Lost, mm³ 10 10 200 200 Volume of Material Lost, mm³ 700 700 700 700 700 0.2 Coefficent of Friction **Coefficent of Friction** 0.08 • • • 0.06 0.04 0.02 0.02 0 ٥ 0 DLC Steel Shot Chemical DLC Shot Steel Chemical Dip Dip Blasted Blasted

Surface Ground Substrate

Surface Finish

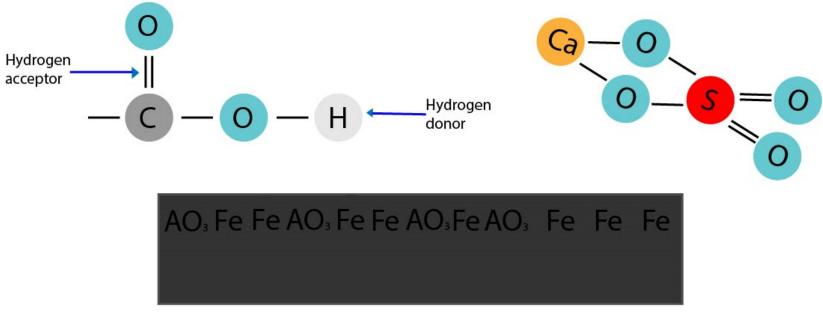


Wear – Calcium sulphate containing coatings

The University Of Sheffield.

Oil

500 µm x180


NM x1.2k 50 um

Wear – Calcium sulphate containing coatings

The

Tribology Centre

Calcium Sulphate - fatty acid interaction

Lubrication Interactions

Summary of Interactions

- Steel dominated by chemisorbed films formed by the carboxylic acid groups - very effective wear and friction reduction mechanism for smooth surfaces
- DLC coatings dominated by physi- and chemisorbed films formed between the dangling bond orbitals on the DLC surface and the carboxylic acid groups.
- Calcium based chemical dip calcium bonds with the fatty acids to enhance lubricity. Sulphur forms bonds with the steel surface. Physisorbed films are generated between aluminium oxide and fatty acids.
- Shot blasting carboxylic acid group acts as an oxidant and bonds with Mo or S to form a physisorbed film.

- Bio base stocks can reduce wear and friction compared with mineral oils
- Soybean oil is most effective and economically choice
- Some benefit to layering a chemical dip or shot blasting before applying DLC
- Most benefit to adding a layer over DLC sacrificial layer?

Further Work

Further Work

Prove (or disprove) the lubricant and surface interactions through assessment of tribofilms

Explore methods for simplifying interaction of bio-lubricants and surfaces using surface energy and tension data

Formulated bio-lubricant tests with EAL style additives

With Thanks

Dr T. Slatter and Prof. R. Lewis –The Leonardo Tribology Centre, The University of Sheffield, UK

Dr U. Little – South West College, UK

The Peter Jost Travel Fund

