The Tribology Laboratory: A Handy Environment for Failure Analysis?

PL De Vaal, HP Benadé, C Kleynhans, S Masilela

University of Pretoria
Department of Chemical Engineering

STLE 2017, Atlanta
21 – 25 May 2017
OUTLINE

• ROUTINE TESTING
 – Fuel & Lubricant performance
 – Physical properties

• IN-HOUSE MODIFICATIONS

• FAILURE ANALYSIS SUPPORT
ROUTINE TESTING

• PERFORMANCE TESTING
 – SRV, HFRR, BOCLE, SLBOCLE
 – FZG – Spur Gear Testing

• WEAR SCAR ANALYSIS
 – Optical microscope
 – Non-contact surface profiler
 – Particle size analysis

• PHYSICAL PROPERTIES
 – Viscosity: BROOKFIELD, STABINGER
 – Boiling point Curve, Flash point
ROUTINE TESTING
IN-HOUSE MODIFICATIONS

• DIESEL
 – Continuous vs Batch flow
 – Effect of Atmosphere: Water & Oxygen
 – Initial conditions: Running-in
IN-HOUSE MODIFICATIONS

• OPEN GEAR LUBRICANTS
 – FZG at constant temperature: Energy-efficiency determination
IN-HOUSE MODIFICATIONS

<table>
<thead>
<tr>
<th>TEST NUMBER</th>
<th>TEMPERATURE (°C)</th>
<th>GEAR SPEED (ms⁻¹)</th>
<th>LOAD STAGE</th>
<th>TEST DURATION (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90 (50)</td>
<td>8.33 (8.33)</td>
<td>11 (11)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>70 (70)</td>
<td>2.76 (8.33)</td>
<td>11 (11)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>90 (90)</td>
<td>8.33 (8.33)</td>
<td>10 (11)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>70 (70)</td>
<td>2.76 (16.66)</td>
<td>10 (11)</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>70 (90)</td>
<td>8.33 (16.66)</td>
<td>10 (11)</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL DURATION FOR A TEST SEQUENCE: 5 hrs
FAILURE ANALYSIS SUPPORT

• Analytical methods:
 – FTIR
 – TGA-GC-MS
 – ICP
FAILURE ANALYSIS SUPPORT

- Electron-microscopy: (SEM)
CONCLUSION

• Lubricants are complex – their behaviour even more so.

• Laboratory performance test results need to relate to an industrial environment.

• Understanding why lubricants behave in the way they do, is the purpose of laboratory-based research.