Hydraulically Controlled Mechanical Seal for Reactor Coolant Pump

Richard F. Salant and William R. Johnson, Georgia Institute of Technology
Gary Boles, EPRI

STLE Annual Meeting and Exhibition
May 25, 2017
The Westinghouse #1 RCP Seal

- 410 Stainless Steel face holder
- Aluminum Oxide or Silicon Nitride face
- Pressurized at 15.5 MPa at OD, 0.48 MPa at ID (2250 to 70 psi)
- Seal injection system cools water to ~66 °C (150 °F)
- Nominal leakage rate = 11.36 L/min (3.0 gpm)
Abnormal Leakage Rates

- Undesirable high or low leakage rate.
- Common causes:
 - Electrophoresis (Chemical Deposition)
 - Pump Transients
 - Temperature and Pressure Excursions
- Can require reactor shutdown in extreme cases.
Controllable Seals – a Potential Solution

- Limited mitigation options has motivated interest in a method of active control of leakage rate.
- Previous controllable seals – two methods:
 - Control the closing force
 - Control the opening force by controlling face geometry (especially the coning!)
- Controlling coning is preferred for stability.
- Based on \(h_i \sim \delta \) where \(h_i \) is the film thickness at the ID and \(\delta \) is the coning.
Coning

\[\delta = h_o - h_i \]

Coning is normally developed by:

- Mechanical Deformation
- Thermal Deformation
- Pre-Coning

- larger \(\delta/h_i \) — more bowed out the profile & larger area under curve
- area \(\sim \) opening force = closing force
- each curve — given value of closing force
- for a given closing force, \(\delta/h_i = \text{constant} \)
 or \(h_i \sim \delta \)
Proposed Controllable Seal for RCP

- Proposed seal face uses hydraulically pressurized internal cavity for active control of coning to adjust leakage rate.
- Proposed seal face is drop-in replacement for existing Westinghouse #1 seal face.
- Numerical models created to predict approximate performance.
The Modeled Face
Hydraulically Controlled Seal Geometry
Seal Behavior & Numerical Model Components

Fluid Mechanics
Reynolds Eq.
(partial diff. eq.)

Deformation Mechanics
online FEA

Iterative computational procedure required
Numerical Modeling

- Model couples deformation and fluid mechanics in face gap
- Fluid mechanics solved numerically using Reynolds Equation in Python
- Deformation solved using finite element analysis (ABAQUS)
- Solve iteratively until converged solution is reached
Computational Procedure

1. Input Specified Parameter Values
2. Guess initial minimum film thickness and distribution (flat face), and assume linear pressure drop
3. Deformation Analysis: Calculate deformation and film thickness distribution
4. Fluid Mechanics Analysis: Calculate pressure distribution
5. Guess new h_{min}
6. Check if film thickness converged
7. Force Balance: Opening force balanced with clamping force balanced?
8. Equilibrium: Calculate imbalance and output computed results
Types of Results of Simulations

- Varying leakage rate
 - Set nominal closing force.
 - Vary control pressures.
 - Compute leakage.
- Restoring nominal leakage rate
 - Perturb closing force from nominal value.
 - Compute leakage ("uncontrolled leakage").
 - Change control pressures until nominal leakage is obtained.
Varying Leakage

![Graph showing varying leakage with cavity pressure.

<table>
<thead>
<tr>
<th>Cavity Pressure (MPa)</th>
<th>Leakage, 9.0 cavity base, $\theta_1 = 80, \theta_2 = 200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPa</td>
<td>PSI</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.1</td>
<td>14.5</td>
</tr>
<tr>
<td>1</td>
<td>145</td>
</tr>
<tr>
<td>2</td>
<td>290</td>
</tr>
<tr>
<td>4</td>
<td>580</td>
</tr>
<tr>
<td>6</td>
<td>870</td>
</tr>
<tr>
<td>8</td>
<td>1160</td>
</tr>
<tr>
<td>10</td>
<td>1450</td>
</tr>
<tr>
<td>12</td>
<td>1740</td>
</tr>
<tr>
<td>14</td>
<td>2031</td>
</tr>
</tbody>
</table>
Restoring Nominal Leakage Rate (Table)

<table>
<thead>
<tr>
<th>Fclose (MN)</th>
<th>Cavity Pressure</th>
<th>Corrected Leakage</th>
<th>Uncorrected Leakage, P = 9.875 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
<td>PSI</td>
<td>Q (L/min)</td>
</tr>
<tr>
<td>0.450</td>
<td>12.3</td>
<td>1784.0</td>
<td>11.48</td>
</tr>
<tr>
<td>0.460</td>
<td>12.05</td>
<td>1747.7</td>
<td>11.50</td>
</tr>
<tr>
<td>0.470</td>
<td>11.55</td>
<td>1675.2</td>
<td>11.25</td>
</tr>
<tr>
<td>0.480</td>
<td>11.0</td>
<td>1595.4</td>
<td>11.31</td>
</tr>
<tr>
<td>0.485</td>
<td>10.75</td>
<td>1559.2</td>
<td>11.25</td>
</tr>
<tr>
<td>0.490</td>
<td>10.3</td>
<td>1493.9</td>
<td>11.25</td>
</tr>
<tr>
<td>0.495</td>
<td>9.875</td>
<td>1432.2</td>
<td>11.36</td>
</tr>
<tr>
<td>0.500</td>
<td>9.25</td>
<td>1341.6</td>
<td>11.33</td>
</tr>
<tr>
<td>0.505</td>
<td>8.45</td>
<td>1225.6</td>
<td>11.30</td>
</tr>
<tr>
<td>0.510</td>
<td>7.4</td>
<td>1073.3</td>
<td>11.33</td>
</tr>
<tr>
<td>0.515</td>
<td>6.3</td>
<td>913.7</td>
<td>11.37</td>
</tr>
<tr>
<td>0.520</td>
<td>4.6</td>
<td>667.2</td>
<td>11.19</td>
</tr>
<tr>
<td>0.525</td>
<td>2.0</td>
<td>290.1</td>
<td>11.26</td>
</tr>
<tr>
<td>0.528</td>
<td>0.1</td>
<td>14.5</td>
<td>11.32</td>
</tr>
</tbody>
</table>
Restoring Nominal Leakage Rate (Plot)
Stress Distribution of Uncorrected Flow

- Maximum von Mises stress = 595 MPa
- Yield strength of 410 stainless steel = 1005 MPa
- Maximum von Mises stress is compressive, circled in red.
Stress Distribution of Corrected Flow

- Maximum von Mises stress = 193 MPa
- Yield strength of 410 stainless steel = 1005 MPa
- Maximum von Mises stress is compressive, circled in red.
Face Deformation

• Face deformation for selected corrected flow rates. Cavity pressures to correct for closing force given in legend.
Pressure Distribution

- Pressure distributions for selected corrected flow rates. Cavity pressures to correct for closing force given in legend.
Conclusions from Simulation

- Hydraulically controlled seal has control range of 28.7 L/min (7.6 gpm) of abnormal leakage rate correction.
- The seal provides sufficient active control to address many abnormal leakage rate scenarios.