Roll Cooling in Novelis Aluminum Hot and Cold Rolling Mills

PRESENTED BY ANDREW HOBBS

Acknowledgement: The work of many former and current colleagues in Alcan and Novelis is presented here
Overview

Objectives of Roll Cooling
Roll Cooling Systems and Spray Nozzles
Coolant Types
Roll cooling measurements
‘Footprint’ Roll Cooling Design Model
Design guidelines
Objectives of Roll Cooling

- Reduce friction and wear
 - Roll force, Surface quality, Refusals
- Remove excess heat
 - Avoid damage to roll
- Control thermal crown on roll
 - Strip thickness profile and flatness
- Wash away wear debris
Roll Cooling Systems

- Several rows of spray nozzles, spaced 1-3 inches apart across the width of the roll
- Valves switch nozzles individually or in zones to selectively cool the roll
Spray Nozzles

- Nozzles deliver spray with a defined flow rate and geometry
- Two main types are used
 - Flat spray – narrow elliptical pattern
 - Full cone – circular pattern

Flat spray nozzle
(Pictures: Spraying Systems Company)

Full cone nozzle
(Pictures: Lechler)
Valves and Cooling Control

- Control the level and distribution of cooling on roll
- Pulse or Level control strategies

Mill coolant valves
(Picture: Primetals Technologies)
Aluminum Rolling Coolants

- Hot rolling emulsion
 - Naphthenic or paraffinic mineral oils
 - Emulsifiers (metal and amine soaps and/or nonionic surfactants)
 - Load-bearing additives (fatty acid, alcohol, ester)
 - Other additives (anti-oxidant, anti-corrosion, biocide,...)
 - Water

- Cold rolling oil
 - Base oil (hydrodynamic lubrication)
 - Additives

- Novelis patented technology for water-based roll cooling

<table>
<thead>
<tr>
<th>Process</th>
<th>Metal temperature</th>
<th>Metal thickness</th>
<th>Coolant</th>
<th>Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot rolling</td>
<td>300-500°C</td>
<td>2-500mm</td>
<td>Emulsion</td>
<td></td>
</tr>
<tr>
<td>Cold rolling</td>
<td>20-200°C</td>
<td><0.1-4mm</td>
<td>Mineral oil</td>
<td>Water</td>
</tr>
</tbody>
</table>

Coolant Effectiveness

- Roll cooling sprays within a coolant containment box (CCB) at exit side; Coolant drainage inside the CCB and CCB is under vacuum
Coolant Effectiveness

- Relative measurement of cooling performance of different Cold Mill Lubricants
 - Heated aluminum block, instrumented with thermocouples, was cooled in a standard test using sprays of various lubricant oils
 - Measured up to 25% reduction in htc compared to normal paraffin
Cooling Measurements

- Measurement of cooling effect of spray
- Heated rotating roll rig
 - Central section with cartridge heaters, instrumented with thermocouples, cooled by spray
- Measured the effects of flow rate, pressure, nozzle type, spray geometry, roll speed, coolant type
- More significant factors are extent of spray coverage area, flow rate and roll speed
- Correlations developed for design of cooling systems

Rotating roll rig for roll cooling measurements
Cooling Distribution

- Measurement of cooling distribution by liquid crystal technique
 - An aluminum sheet, with the back surface painted black and with a film of liquid crystal coating, was initially cooled to uniform ambient temperature
 - Hot water sprays were impinged on the front surface. Lines of color change were video recorded then analysed to yield contour maps of htc value
Spray Footprint Measurements

- Spray footprints measured with Fujifilm pressure-sensitive film
 - Film attached to an arc of mill roll circumference, where sprays impinge, and covered with ‘water-proof’ plastic sheet
 - Sprays are operated for 10 seconds and film color changes to red, depending on the pressure
 - Films can be scanned with Fuji analyser to determine the impingement pressure distribution
 - Measurement reveals blocked, misaligned or damaged nozzles etc

![Mill roll wrapped with Fujifilm pressure sensitive film](image)

![Analysis of Fujifilm pressure footprints](image)
Roll Cooling Design

- Design model incorporates knowledge from roll cooling measurements
- Model input parameters:
 - Roll and spray bars
 - Nozzle types and flow characteristics
 - Valve characteristics
 - Coolant type
 - Strip and rolling

Interface for Footprint roll cooling design model
- **Design guidelines**
 - Large spray coverage on rolls and space spray bars around circumference
 - Cool exit side unless carryover is an issue
 - Position spray bars not too close to roll and aim near perpendicular to roll (sensitivity to roll diameter)
 - Target 10-50% spray overlap for full range of roll diameters
SUMMARY

- Multiple functions of roll coolant
- Zoned application and controlled level of cooling
- Different coolant types
- Measurements for roll cooling design and process development
Thank you

Questions ?