

The effect of water ingress on environmentally adapted greases

ROLAND ARDAI, JOHANNA LARSSON

DEVELOPMENT ENGINEERS

Introduction

- Protect and improve our environment with lubricating grease
- Provide acceptable or better performance than before
- Combine environmental focus with governmental and international regulations
- Show off this with "green labels"
- Keep in place if it is exposed to water
- Any form of water!

Applications

The general requirements of labelled products

- Substance specific information required
- Exclusion of specific substances
- Biodegradability
- Bioaccumulation
- Aquatic toxicity
- Renewability
- Technical performance

EU flower – Grease related categories

	Category 2 requirements Greases	Category 3 requirements Total loss lubricants	
Toxicity			
Non toxic %	Not limited	Not limited	
Harmful %	max 25	max 5	
Toxic %	max 1	max 0,5	
Very toxic %	max 0,1	max 0,1	
Biodegradation and bioaccululation			
Ultimatelly biodegradable %	> 75	> 90	
Inherenty biodegradable %	may 25 tagathar	max 5	
Non-biodegradable and non-bioacculative %	max 25 together	max 5	
Non-biodegradable and bioaccumulate %	max 0,1	max 0,1	
Fraction not assessed by toxicity %	<0,5	<0,5	
Fraction not assessed by biodegradation/bioaccumulation %	<0,5	<0,5	
Renewable content %	min 45	min 70	

Soaps

Metal containing compounds are forbidden except sodium, potassium, magnesium and calcium

In thickeners Li and Al are accepted

Environmental properties are different with different fatty acids and not all of them listed

Soaps for EEL

Soap		Grease	Classification
	Sodium stearate	Na	Biodegradable, non toxic
	Calcium distearate	Са	Biodegradable, non toxic
	Calcium di-12- hydroxystearate	Anhy-Ca	Biodegradable, non toxic
Calcium acetate		СаХ	Not biodegradable, non toxic
Lithium 12- hydroxystearate		Li	Inherently aerobically, harmful
Dilithium sebacate		LiX	Not biodegradable, harmful
Dilithium azelate		LiX	Not biodegradable, harmful
Silica gel		Si	Not biodegradable, non toxic

Grease selection

Identifier	Thickener	Thickener concentration [%]	Base oil	BOV at 40°C [mm²/s]
Ca-Veg	Anhy-Calcium	11	Rapeseed oil	36
Ca-Est	Anhy-Calcium	11	TMP ester	44
Li-Veg	Lithium	13	Rapeseed oil	36
Li-Est Lithium		11	TMP ester	44

Water in grease

Diffusion NMR

Diffusion NMR

Magnetic resonance imaging (MRI)

Base oils separate from water (min)

Mechanical stability

Remaining viscosity

Dropping point

Water repellency

	Water re	sistance	Water spr	ay off [%]	Water spr	ay off [%]
Identifier	(90°C/3h)		(38°C/5min)		(38°C/1min) ¹	
	No water	Water	No water	Water	No water	Water
Li-Veg	0	0	100	100	97	97
Li-Est	0	0	100	100	94	86
Ca-Veg	0	0	100	100	97	97
Ca-Est	0	0	100	100	67	60

1: shortened time

Storage stability

Oil separation (40°C/168h)

Low temperature performance

Low temperature structural change

- Oscillatory movement, 0,1% at 10 rad/s
- Temperature ramp from 25°C to -35°C
- Cooling speed 3°C/min

Summary

Conclusions

- If the lubrication point is exposed by water or/and low temperature, ester based anhy-Ca is a very good solution
- The study need to be continued with different EAL oils and additives to investigate water resistance in EALs

Thank you for your attention!