

JEFFADD™ MW-781 Etheramine: a Multi-functional Primary Amine for Water-miscible Metalworking Fluids

Huntsman Corporation
Huntsman Performance Products

Anabel Rubio Scientist

STLE National Meeting Las Vegas, Nevada May 16, 2016

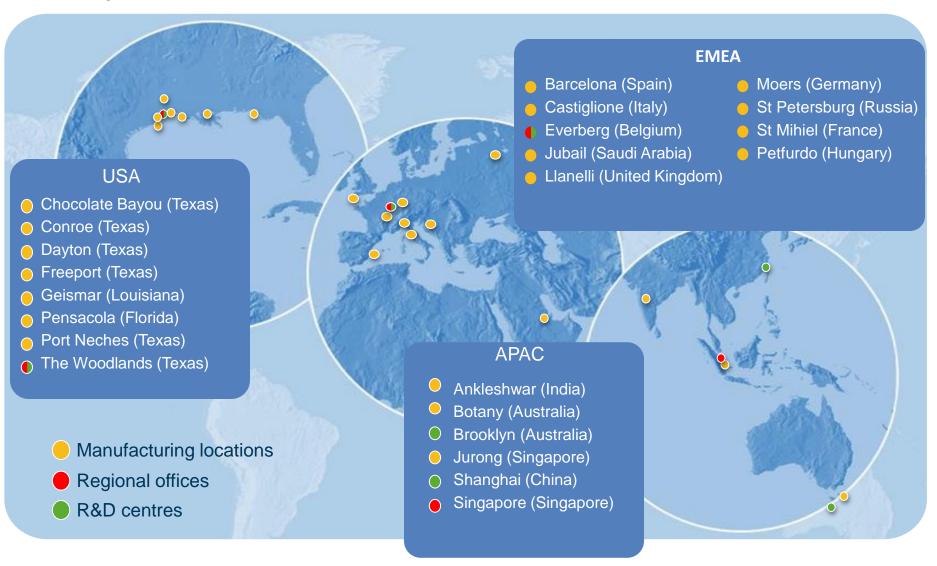
Today's presentation

- Huntsman Performance Products
 - Products for Metalworking
- JEFFADD™ MW-781 Etheramine
 - Performance evaluation
 - Formulations
- Conclusions

Performance Products

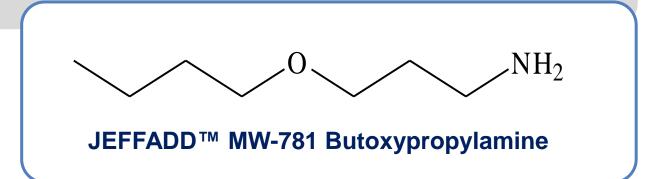
Key Products

We modify base chemicals to create the molecular building blocks that improve functionality, enhance processes and create differentiated formulas.


Specialty Amines	Surfactants
 Alkylalkanolamines Ethanolamines Ethyleneamines Morpholine / DGA™ agent Polyetheramines Substituted propylamines 	 Nonionic Anionic Cationic Amphoteric Polymeric surfactant

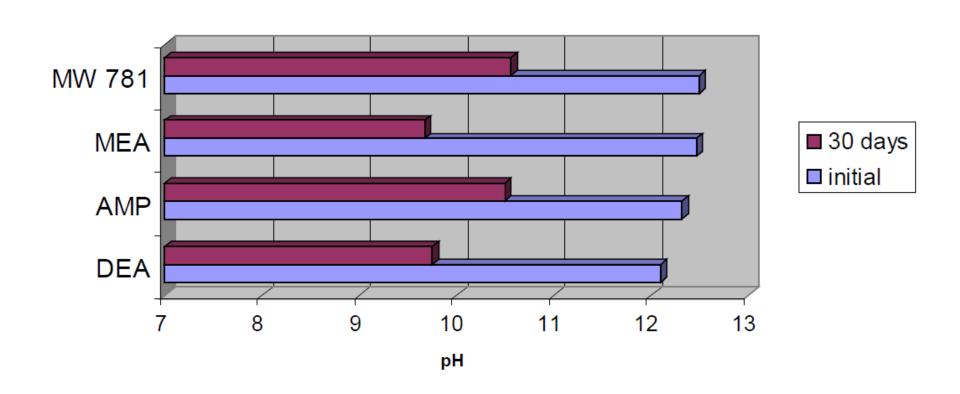
Carbonates	Intermediates
 JEFFSOL® ethylene carbonate JEFFSOL® propylene carbonate JEFFSOL® glycerine carbonate ULTRAPURE™ propylene carbonate ULTRAPURE™ ethylene carbonate 	Maleic anhydrideGlycolsLinear alkylbenzeneSpecialty alkylates

About us


Global presence

- Low molecular weight primary amine
- Mild to low staining on aluminum
- Inhibits staining on aluminum in the vapor phase
- Alkalinity source
- Inherently low foaming
- Excellent tramp oil rejection in synthetic fluids

JEFFADD™ MW-781 Etheramine Specialty Amine


Comparison of JEFFADD™ MW-781 Etheramine with Other Amines for Metalworking

Amine	CAS#	Molecular Weight	Viscosity cSt,25°C	Freezing Point °C	pKb
JEFFADD™ MW-781 etheramine	16499-88-0	131	2	-47	4.23
Monoethanolamine (MEA)	141-43-5	61	19	11	3.50
2-amino-2-methyl- propanol (AMP)	124-68-5	89	147	30	4.28
Diethanolamine (DEA)	111-42-2	105	147	28	5.00
Methyldiethanolamine (MDEA)	105-59-9	119	101 (20°C)	-21	5.41
Triethanolamine (TEA)	141-43-5	149	527	21	6.24

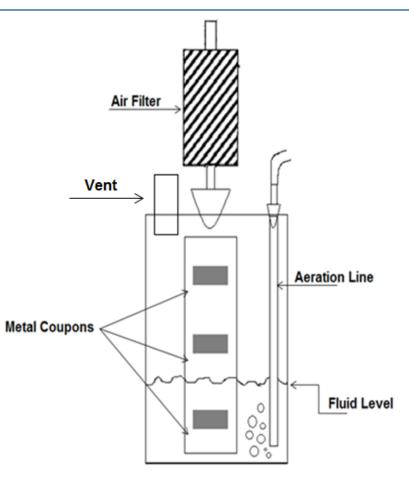
Specialty Amine

Test Conditions: 5% aqueous amine solution at room temperature

Aluminum Staining

Performance Evaluation: Aluminum Staining

MW-781 Salts


Alloy	1.0% MW-781 Aqueous	1.5% MW-781 + Polycarboxy c acid	1.5% MW-781 + Dodecanedioic acid	1.5% MW-781 + Sebacic Acid	1.5% MW-781 + Isononanoic Acid	1.5% MW-781 + Boric Acid
AI 2024	•					
AI 6061					4.3	29
AI 7075		#£75 11		AL7023	2 4	

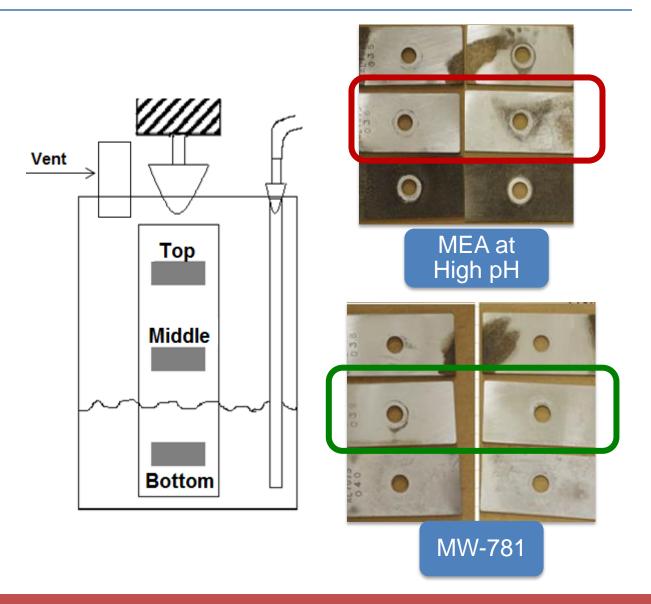
Test Conditions: Coupons half submersed in 2:1 amine: acid solution;adjusted pH of 9.30 and placed in oven for 3 hours at 50° C

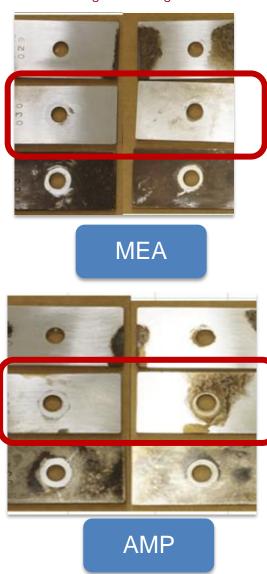
Performance Evaluation: Aluminum Staining

Vapor Phase Staining on Aluminum

Test vessel used for evaluating MW-781 staining of aluminum in the vapor phase

		gg	
Components	Make-u _l	o of Fluid Co	oncentrate
		(Wt. %)	
DI Water	60.00	60.00	60.00
MEA	5.00		
AMP		5.00	
MW-781			5.00
TEA	15.00	15.00	15.00
Dodecanedioic	2.00	2.00	2.00
Acid	2.00	2.00	2.00
Isononanoic	8.00	8.00	8.00
Acid	0.00	0.00	8.00
SURFONIC®	10.00	10.00	10.00
17R4 Surfactant	10.00	10.00	10.00
Appearance	Yellow,	Yellow,	Yellow,
	Clear	Clear	Clear
Initial pH	9.00	8.28	8.11
Final pH after	10.00	0.00	0.00
adjustment*	10.00	9.00	9.00
 5% dilution in 125ppm 	hard water w	as adjusted with	50% NaOH


- 5% dilution in 125ppm hard water was adjusted with 50% NaOH
- Test conditions: 50°C, with aeration for 4 days, using Al7075


Performance Evaluation: Aluminum Staining

Vapor Phase Staining on Aluminum

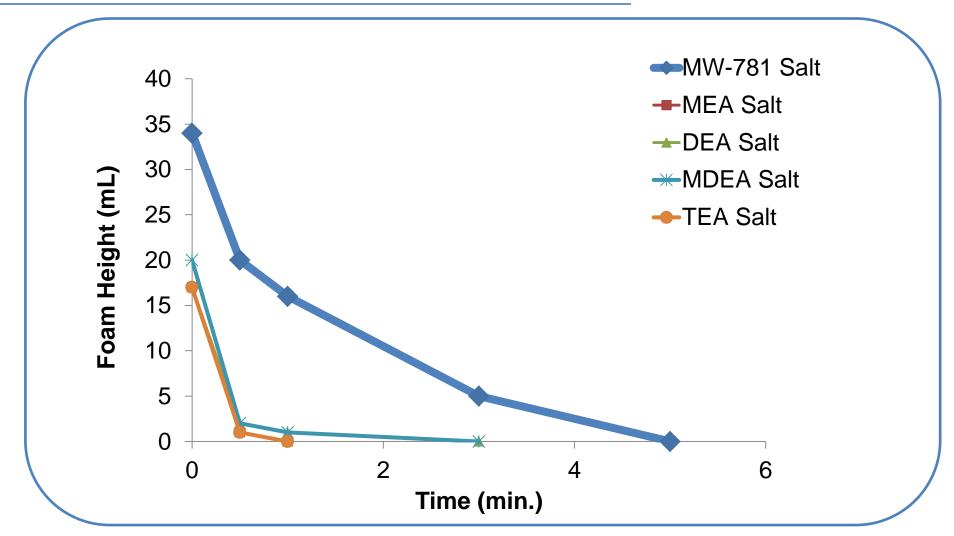
Enriching lives through innovation

JEFFADD™ MW-781 Etheramine Aluminum Staining

- MW-781 salts show mild to low staining on aluminum alloys
- MW-781 with dodecanedioic acid shows slight corrosion on Al 2024, Al 6061, and Al 7075
- MW-781 borate shows no corrosion on Al 6061
- MW-781 shows protection against staining on aluminum in the vapor phase

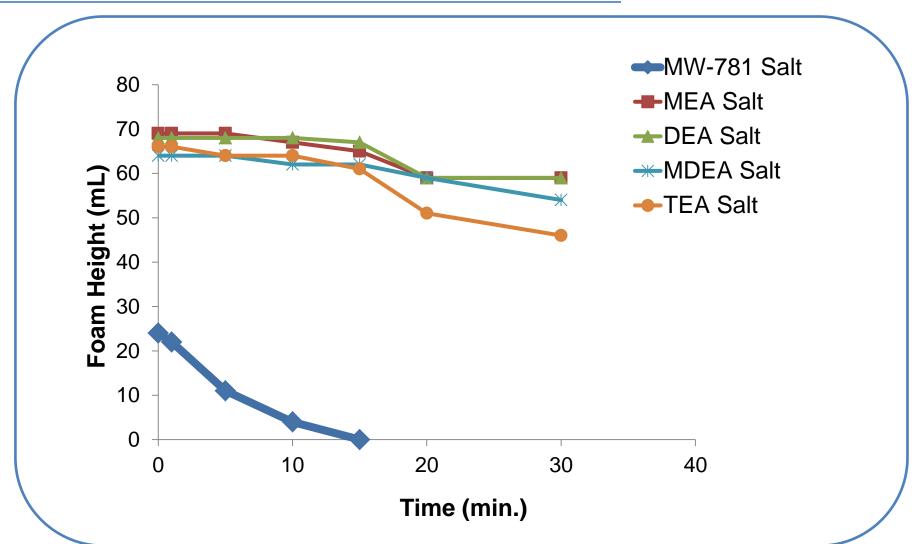
Low Foaming

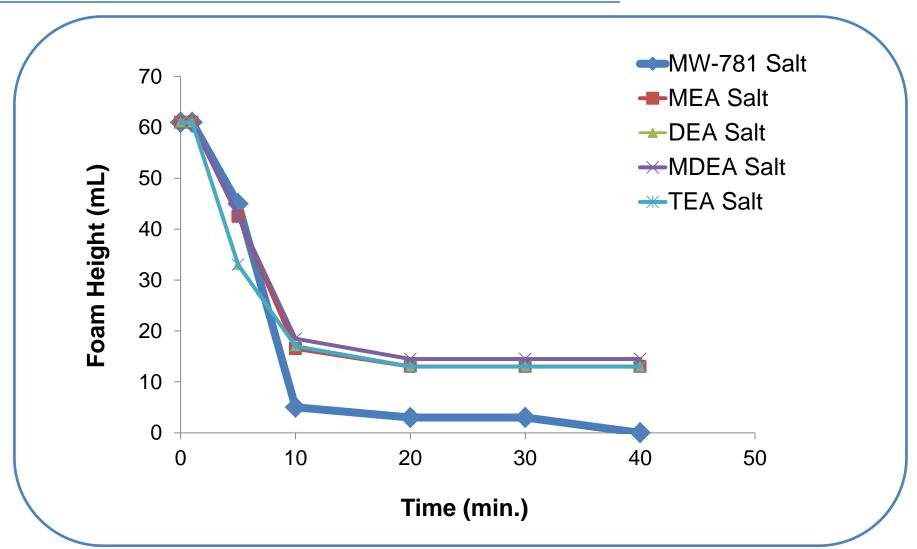
Amine Salt Solution

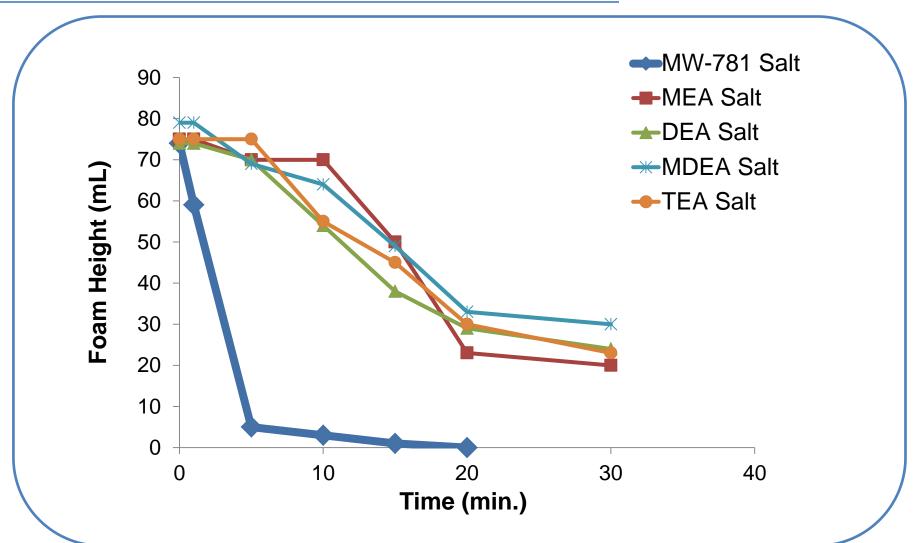

Component	Make	Make-up of Amine Salt Solution (Wt. %)			
Isononanoic Acid	2.00	2.00	2.00	2.00	2.00
MW-781	1.80				
MEA		1.00			
DEA			2.64		
MDEA				1.70	
TEA					3.60
Deionized Water	98.00	98.00	98.00	98.00	98.00
pH of amine salt solution	9.29	9.29	9.28	8.02	7.97

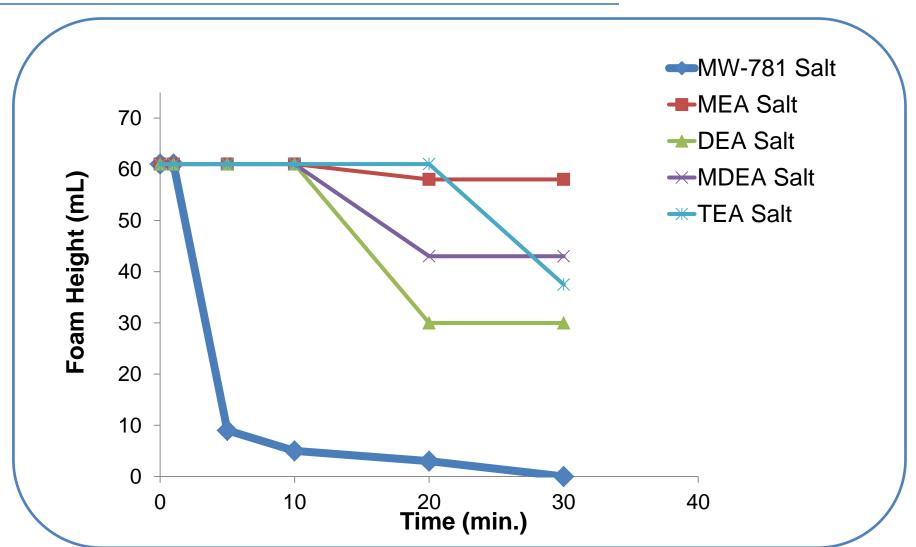
Conditions

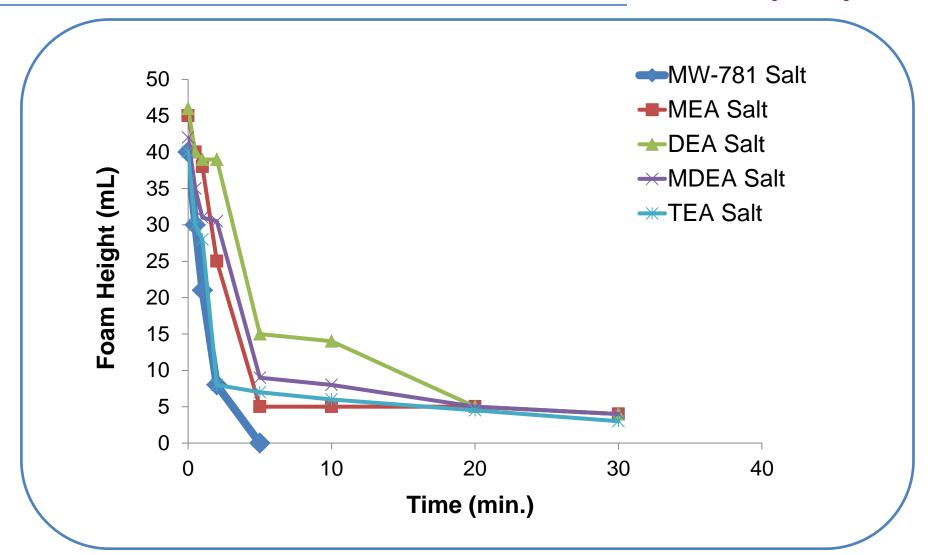
- pH value adjusted with amine
- TEA and MDEA pH set lower due to lower pKb of amines
- Foam test
 performed by the
 hand-shaken
 method with 60mL
 of amine salt
 solution in a 100 mL
 graduated cylinder
 at room
 temperature.


No Surfactant


Anionic Surfactant: SDBS


Anionic Surfactant: Ether Carboxylic Acid


Non-ionic Surfactant: NPE


Non-ionic Surfactant: Linear Alcohol Ethoxylate

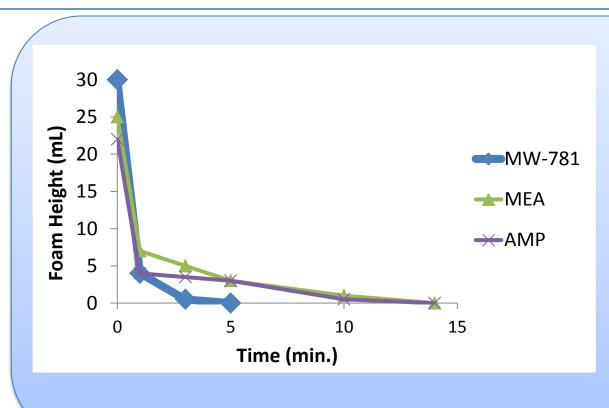
Non-ionic Surfactant: Reverse EO:PO Block Copolymer

Inherently Low Foaming

- Inherently low foaming
- Low foaming observed with non-ionic and anionic surfactants compared to amine salt of other amines
- Excellent low foaming ability with reverse EO:PO block copolymers
 - No foaming in less than 5 minutes.

Performance in Synthetic fluids

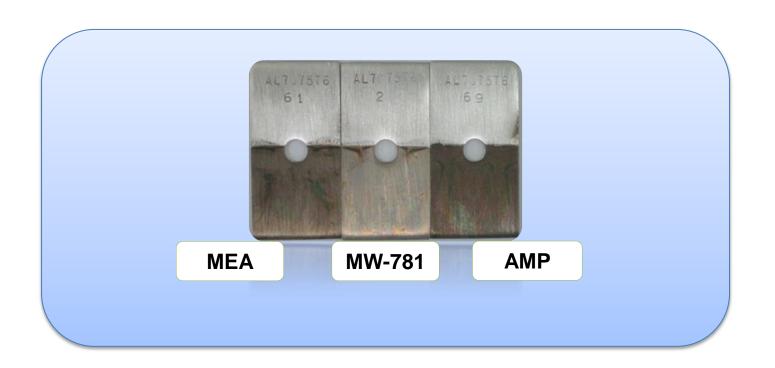
Performance Evaluation in a Synthetic Fluid


Component	Make-up of Fluid Concentrate (Wt. %)			
Deionized Water	60.20	57.70	58.90	
Monoethanolamine	4.80	2.50	1.30	
Triethanolamine	15.00	15.00	15.00	
MW-781	-	4.80	-	
AMP	-	-	4.80	
Isononanoic Acid	8.00	8.00	8.00	
Dodecanedioic Acid	2.00	2.00	2.00	
SURFONIC® 17R4 Surfactant	10.00	10.00	10.00	
Appearance	Yellow, Clear	Yellow, Clear	Yellow, Clear	
pH, 5% in DI water	9.24	9.27	9.26	

Performance Evaluation

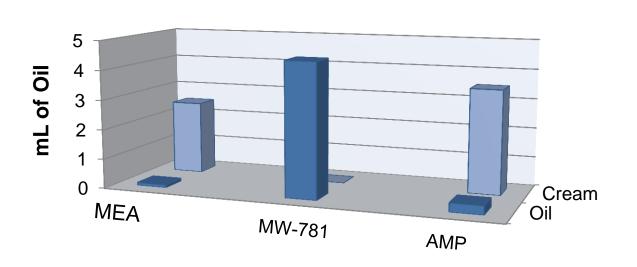
- Foaming
- Tramp oil rejection
- Staining on aluminum

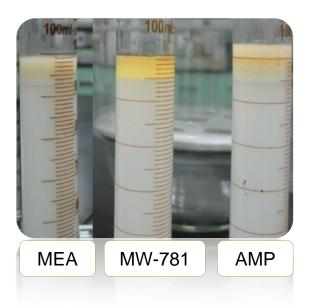
Foaming in a Synthetic Fluid



JEFFADD™ MW-781 etheramine has better foam control performance than MEA and AMP

Aluminum Staining in a Synthetic Fluid

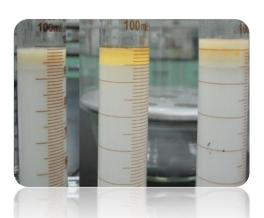




JEFFADD™ MW-781 etheramine has the least amount of staining on aluminum compared to MEA and AMP

Tramp Oil Rejection in a Synthetic Fluid

JEFFADD™ MW-781 etheramine has better tramp oil rejection performance than MEA and AMP.


Performance Evaluation in a Synthetic Fluid

- Excellent tramp oil rejection compared to other amino alcohols
- Low foaming
- Low staining on aluminum

Formulation

Emulsification in Soluble Oil Before pH Adjustment

Component	Make-u	p of Fluid Co	oncentrate	(Wt. %)
DI Water	10.00	10.00	10.00	10.00
Isonononanoic Acid	5.00	5.00	5.00	5.00
MW-781	3.00	-	-	-
AMP	-	3.00	-	-
Dicyclohexylamine	-	-	3.00	-
MEA	-	-	-	3.00
TEA	8.00	8.00	8.00	8.00
Oleyl-cetyl Ether Carboxylic Acid	5.00	5.00	5.00	5.00
Naphthenic Oil	46.00	42.00	45.40	42.00
TOFA Amide	5.00	5.00	5.00	5.00
Methyl Oleate	4.00	4.00	4.00	4.00
Dodecanol	4.00	4.00	4.00	4 00
SURFONIC® L24-3 Surfactant	9.00	9.00	10.60	14.00
Appearance	Ciear,	Ciear ,	Ciear ,	Ciear,
	Yellow	Yellow	Yellow	Yellow
pH 5% in 125ppm Hard Water	8.50	8.90	8.20	9.10

- Soluble Oil formulation with anionic surfactant
- Before pH adjustment with MEA
- Emulsification similar to AMP and lower than other amines

Emulsification in Soluble Oil After pH Adjustment

Component	Make-up of Fluid Concentrate				
		(Wt. %)			
DI Water	10.00	10.00	10.00	10.00	
Isonononanoic Acid	5.00	5.00	5.00	5.00	
MW-781	3.00	-	-	-	
AMP	-	3.00	-	-	
Dicyclohexylamine	-	-	3.00	-	
MEA	1.25	1.00	2.25	3.00	
TEA	8.00	8.00	8.00	8.00	
Oleyl-cetyl Ether	5.00	5.00	5.00	5.00	
Carboxylic Acid	3.00	3.00	3.00	3.00	
Naphthenic Oil	46.00	41.00	45.40	42.00	
TOFA Amide	5.00	5.00	5.00	5.00	
Methyl Oleate	4.00	4.00	4.00	4.00	
Dodecanol	4.00	4.00	1.00	4.00	
SURFONIC® L24-3	9.00	14.00	13.60	14.00	
Surfactant	9.00	14.00	13.00	14.00	
Appearance	Clear,	Clear ,	Clear,	Clear,	
	Yellow	Yellow	Yellow	Yellow	
pH 5% in 125ppm Hard Water	9.20	9.10	9.30	9.10	

- Soluble oil formulation after adjustment with MEA
- No change in the amount of nonionic surfactant added.
- The amount of emulsifier required increased for other amines

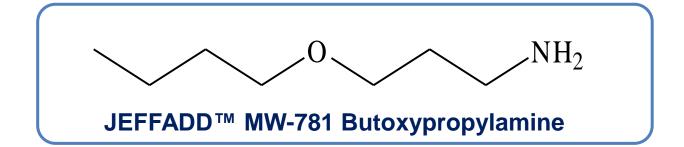
Emulsification in a Semi-synthetic Formulation

Component	Make-up o	f Fluid Concen %)	trate (Wt.
Naphthenic Oil	20.00	20.00	20.00
Isopropyl Palmitate	5.00	5.00	5.00
Polycarboxylic Acid	3.00	3.00	3.00
DI Water	34.00	36.00	34.00
MW-781	5.00	-	-
MEA	-	4.00	-
AMP	-	-	5.00
TEA	8.00	8.00	8.00
SURFONIC® L24-7 Surfactant	16.00	11.00	12.00
NANSA® SM60/HBH Emulsifier	3.00	5.00	5.00
Dicarboxylic acid	3.00	3.00	3.00
Diglycol Monobutyl Ether	-	2.00	2.00
Dodecanol	3.00	3.00	3.00
pH 5% in 125ppm Hard Water	9.39	9.29	9.79

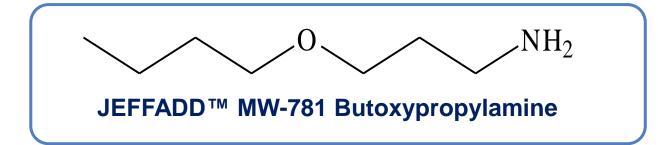
- MW-781 can be incorporated using a low HLB emulsifier
- Required less low HLB emulsifier in formulation

Emulsification in Soluble Oil and Semi-synthetic Fluids

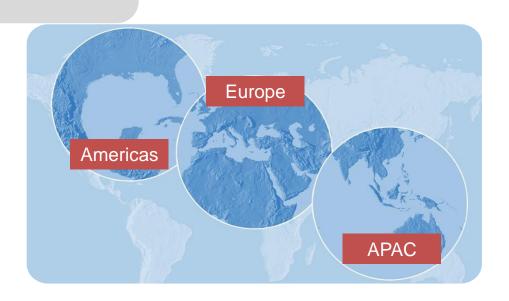
- Compatible with non-ionics and most anionics
- Can be incorporating into soluble oil and semi-synthetic formulations with low HLB emulsifiers



Summary of Advantages



- Multi-functional additive with advantages for aluminum applications
- Coupling agent
- Easily formulated into water-miscible fluids with low HLB emulsifiers
- Can improve tramp oil rejection in synthetic fluids



- Amine salts can be low staining on aluminum
 - No corrosion on Al 6061 with MW-781 borate
 - Low staining with MW-781 dodecanedioic acid salt
- Inherently low foaming
 - Excellent low foaming with EO:PO block copolymers

- Listed on:
 - TSCA
 - NDSL
 - EINECS
 - KECL
 - ENCS

Thank you

For more information about Huntsman Performance Products, please contact:

Anabel Rubio Scientist, Metalworking Huntsman Performance Products

Tel: 281-719-7664

Email: anabel_rubio@huntsman.com

www.huntsman.com/performance_products

Disclaimer

Huntsman Corporation warrants only that its products meet the sales specifications stated in Huntsman's current Technical Bulletin for the product. Typical properties, where stated, are to be considered as representative of current production and should not be treated as specifications. While all the information presented in this document is believed to be reliable and to represent the best available data on these products, HUNTSMAN MAKES NO WARRANTY OR GUARANTEE OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF ANY THIRD PARTY, OR WARRANTIES AS TO QUALITY OR CORRESPENDENCE WITH PRIOR DESCRIPTION OR SAMPLE, AND ANY USER OF PRODUCTS DESCRIBED HEREIN SHOULD CONDUCT A SUFFICIENT INVESTIGATION TO ESTABLISH THE SUITABILITY OF ANY PRODUCT FOR ITS INTENDED USE AND ASSUMES ALL RISK AND LIABILITY WHATSOEVER RESULTING FROM THE USE OF SUCH PRODUCT, WHETHER USED SINGLY OR IN COMBINATION WITH OTHER SUBSTANCES. Product(s) described in this publication may be hazardous and/or toxic and require special precautions in handling.

For all product(s) described herein, the user should obtain from Huntsman detailed information on hazards and/or toxicity, together with proper shipping, handling, and storage procedures, and should comply with all applicable safety and environmental standards. The behavior, hazards and/or toxicity of the product(s) referred to in this publication in manufacturing processes and their suitability in any given end-use environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which may not be known to Huntsman. It is the sole responsibility of the user of such product(s) to evaluate the manufacturing circumstances and the final product(s) under actual end-use requirements and to adequately advise and warn future purchasers and users thereof. All information contained herein is provided "as is" without any warranties, express or implied, and under no circumstances shall the author or Huntsman be liable for any damages of any nature whatsoever resulting from the use or reliance upon such information. Nothing contain in this publication should be construed as a license under any intellectual property right of any entity, or as a suggestion, recommendation, or authorization to take any action that would infringe any patent. The term "Huntsman" is used herein for convenience only, and refers to Huntsman Corporation, its direct and indirect affiliates, and their employees, officers, and directors.

SURFONIC®, JEFFSOL® and NANSA® are registered trademarks of Huntsman Corporation or an affiliate thereof in one or more, but not all countries. JEFFADD™ and ULTRAPURE™ are trademarks of Huntsman Corporation or an affiliate thereof. © Copyright 2016. Huntsman Corporation or an affiliate thereof. All Rights reserved.

Main Offices US: Huntsman Corporation / 500 Huntsman Way / Salt Lake City, Utah 84108 / 801-584-5700 Technical Service US: 8600 Gosling Road / The Woodlands, Texas 77381 / 281-719-7780

Main Offices Europe: Huntsman Belgium BVBA / Everslaan 45 / B-3078 Everberg, Belgium / 32-2 -758-9211

Technical Service Europe: Technical Services Representative / Everberg Office / 32-2-758-9392

Main Offices Asia Pacific Offices: Huntsman Singapore PTE / 150 Beach Road, #37-00 Gateway West / Singapore 189720 / 65 6297 3363

Technical Service Asia Pacific: Huntsman Performance Products / 61 Market Road, Brooklyn, Victoria / Australia 3012 /

61 3 9933 6666

www.huntsman.com